An Exact Solution for Classic Coupled Thermoporoelasticity in Cylindrical Coordinates
نویسندگان
چکیده مقاله:
In this paper the classic coupled thermoporoelasticity model of hollow and solid cylinders under radial symmetric loading condition (r, t) is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal and pressure boundary conditions, the body force, the heat source, and the injected volume rate per unit volume of a distribute water source are considered in the most general forms, and no limiting assumption is used. This generality allows simulation of various applicable problems.
منابع مشابه
An Exact Solution for Classic Coupled Thermoporoelasticity in Axisymmetric Cylinder
In this paper, the classic coupled poro-thermoelasticity model of hollow and solid cylinders under radial symmetric loading condition is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal and pressure boundary conditions, the body force, the heat source and the injected volume rate per unit volume of a distribute ...
متن کاملAn Exact Solution for Classic Coupled Magneto-Thermo-Elasticity in Cylindrical Coordinates
In this paper, the classic coupled Magneto-thermo-elasticity model of hollow and solid cylinders under radial-symmetric loading condition (r, t) is considered. A full analytical and the direct method based on Fourier Hankel series and Laplace transform is used, and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body fo...
متن کاملAn Exact Solution for Lord-Shulman Generalized Coupled Thermoporoelasticity in Spherical Coordinates
In this paper, the generalized coupled thermoporoelasticity model of hollow and solid spheres under radial symmetric loading condition (r, t) is considered. A full analytical method is used and an exact unique solution of the generalized coupled equations is presented. The thermal, mechanical and pressure boundary conditions, the body force, the heat source and the injected volume rate per unit...
متن کاملAn Exact Solution for Kelvin-Voigt Model Classic Coupled Thermo Viscoelasticity in Spherical Coordinates
In this paper, the classic Kelvin-Voigt model coupled thermo-viscoelasticity model of hollow and solid spheres under radial symmetric loading condition is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body force, and the heat source are considered in the most general fo...
متن کاملExact solution for the vibrations of cylindrical nanoshells considering surface energy effect
It has been revealed that the surface stress effect plays an important role in the mechanical behavior ofstructures (such as bending, buckling and vibration) when their dimensions are on the order ofnanometer. In addition, recent advances in nanotechnology have proposed several applications fornanoscale shells in different fields. Hence, in the present article, within the framework of surfaceel...
متن کاملAn exact analytical solution for two-dimensional, unsteady, multilayer heat conduction in spherical coordinates
Analytical series solution is proposed for the transient boundary-value problem ofmultilayer heat conduction in r–h spherical coordinates. Spatially non-uniform, but time-independent, volumetric heat sources may exist in the concentric layers. Proposed solution is valid for any combination of homogenous boundary conditions of the first or second kind in the h -direction. However, inhomogeneous ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 1 شماره 4
صفحات 343- 357
تاریخ انتشار 2009-12-30
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023